Polyominoes

All images © Abaroth. Permission is given to reproduce for non-profit purposes only.

Home   Historic Sites   Models   Heraldry   Puzzles   Garden   Links

Polyominoes are formed by joining unit squares to form larger pieces. Pieces are confined to the square grid.

 Monomino - 1 (1 tile)

         

 Domino - 1 (2 tiles)

         

 Trominoes - 2 (6 tiles)

       
1 2        

 Tetrominoes - 5 (20 tiles)

 
1 2 3 4 5  
I L T N O  

 Pentominoes - 12 (60 tiles)

1 2 3 4 5 6
I L Y N P F
7 8 9 10 11 12
T U V W X Z

 Hexominoes - 35 (210 tiles)

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35

 

 For higher orders of polyominoes, the number of pieces is as follows:

 Heptominoes - 108

 Octominoes    - 369

 Enneominoes - 1285

 Decominoes   - 4655

Puzzles using Pentominoes

 

Home   Historic Sites   Models   Heraldry   Puzzles   Garden   Links

Contact me with suggestions, comments or questions.

free page counter