Polystick Puzzles

All images © Abaroth. Permission is given to reproduce for non-profit purposes only.

Home   Historic Sites   Models   Heraldry   Puzzles   Garden   Links

 

Tetrastick Puzzles

These puzzles use the 16 tetrasticks. The pieces cover 64 unit line segments. Symmetric patterns are impossible to create with the complete set due to an imbalance between the number of horizontal and vertical line segments. However, symmetric patterns can be made using 15 of the pieces, omitting one of the five with an excess of horizontal or vertical segments: H, J, L, N, or Y.

 

Geometric Forms

       Use 15 pieces to make a symmetric pattern. Here are examples for the different types of symmetry.

Type of Symmetry

Full Tetrarotary Double Bilateral Reflective Double Diagonal Diagonal Birotary

Compatibilities

      Polyforms are compatible if there is a shape that can be tiled by each. You can find more about Polyform Compatibility at George Sicherman's Polyform Curiosities website. Here are minimal known compatibilities for the tetrasticks.
 
* 4 4   4   4                  
4 * 2 2 4   4 4 4   4 4 2   2  
4 2 * 2 4 R 4 4 4 4 4 4 2 8 4  
  2 2 * 4 4 4 4 4 R 4 4 2 4 4  
4 4 4 4 *   2 2 R   2 2     4  
    R 4   * R 2 2 2 4 2 4 2 4 2
4 4 4 4 2 R * 2 2   6 2 2   4  
  4 4 4 2 2 2 * 2 R 2 2 8 4 4  
  4 4 4 R 2 2 2 * 2 R 2 4 2 4 4
    4 R   2   R 2 * 4 R 4 4   R
  4 4 4 2 4 6 2 R 4 * 2 R 2 4  
  4 4 4 2 2 2 2 2 R 2 * 4 2 4 R
  2 2 2   4 2 8 4 4 R 4 * 4 4 4
    8 4   2   4 2 4 2 2 4 * 4 2
  2 4 4 4 4 4 4 4   4 4 4 4 * 4
          2     4 R   R 4 2 4 *

Baiocchi Figures

       A Baiocchi Figure is one with maximal symmetry for the set of polyforms. You can find more about Baiocchi Figures at George Sicherman's Polyform Curiosities website. Here are the minimal solutions for the tri- and tetrasticks.

Home   Historic Sites   Models   Heraldry   Puzzles   Garden   Links

Contact me with suggestions, comments or questions.

free page counter