Polyzoids

All images © Abaroth, 2016. Permission is given to reproduce for non-profit purposes only.

Home   Historic Sites   Models   Heraldry   Puzzles   Garden   Links

Polyzoids are formed from one quarter of a hexagon. They form a subset of the polydrafters of three times the order. The pieces are confined to a polydrafter grid. If the pieces are allowed to break this first grid, then we can create the extended polyzoids, which lie within the grid in a different way as shown below.

          

 

 Monozoid - 1 (1 tile)

       

 Dizoids - 7 (14 tiles) + Extended dizoids - 5 (10 tiles)

1 2 3 4 5
6 7 8* 9* 10*
     
11* 12*      

 Trizoids - 24 (72 tiles) + Extended trizoids - 85 (255 tiles, not pictured)

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
 
21 22 23 24  

 

  For higher orders of polyzoids, the number of pieces is as follows:

  Tetrazoids - 147 + Extended tetrazoids -1,310

  Pentazoids - 839 + Extended pentazoids - 18,256

  Hexazoids - 5,461 + Extended hexazoids - ?

  Heptazoids - ? + Extended heptazoids - ?

 

Puzzles using Polyzoids

 

Home   Historic Sites   Models   Heraldry   Puzzles   Garden   Links

Contact me with suggestions, comments or questions.

free page counter