Polyhes, Polyhalfhexes & Polytriamonds

All images © Abaroth. Permission is given to reproduce for non-profit purposes only.

Home   Historic Sites   Models   Heraldry   Puzzles   Garden   Links

Polyhes are formed from three equilateral triangles, or half a hexagon cut corner-to-corner. They form a subset of the polyiamonds of three times the order. The pieces are confined to the hexagonal grid, such that each grid cell can contain only one monohe. Keeping to the grid, but allowing a cell to contain a complete hexagon, we get a set named polyhalfhexes. Removing the grid restrictions completely, we arrive at a complete set of polytriamonds.

 Monohe / Monohalfhex / Monotriamond - 1 (1 tile)

       

 Dihes - 4 (8 tiles) + Dihalfhexes - 5 (10 tiles) + Ditriamonds - 9 (18 tiles)

1 2 3 4 5
 
6 7 8 9  

  Trihes - 13 (39 tiles) + Trihalfhexes - 15 (45 tiles) + Tritriamonds (not pictured) - 94 (282 tiles)

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

 

Polyhes

Polyhalfhexes

Polytriamonds

Tetrahes - 60

Tetrahalfhexes - 82

Tetratriamonds - 1552

Pentahes - 276

Pentahalfhexes - 429

Pentatriamonds - 27285

Hexahes - 1416

   

Heptahes - 7201

   

Octahes - 37972

 

 

 

 

 

 

 

 

 

Home   Historic Sites   Models   Heraldry   Puzzles   Garden   Links

Contact me with suggestions, comments or questions.